DIORGANOTIN(IV) DERIVATIVES OF \boldsymbol{N}-PHTHALOYL AMINO ACIDS

G.K. SANDHU*, R. GUPTA, S.S. SANDHU,
Department of Chemistry, Guru Nanak Dev University, Amritsar-143005 (India)
R.V. PARISH and K. BROWN
Department of Chemistry, The University of Manchester, Institute of Science and Technology, Manchester M60 1QD (Great Britain)

(Received February 15th, 1984)

Summary

Twentyfour complexes of the general formulae $\left(\mathrm{R}_{2} \mathrm{SnL}_{2}\right.$ and $\mathrm{R}_{2}(\mathrm{~L}) \mathrm{SnOSn}(\mathrm{L}) \mathrm{R}_{2}$ ($\mathrm{L}=N$-phthaloyl derivative of L -leucine, DL-alanine and L -phenylalanine; $\mathrm{R}=\mathrm{CH}_{3}$, $\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$ and $\mathrm{n}-\mathrm{C}_{8} \mathrm{H}_{17}$) have been prepared by reacting ligand and dialkyltin(IV) oxide in $2 / 1$ and $1 / 1$ (ligand/metal) molar ratio. These complexes have been characterised by elemental analysis and structures assigned with the help of infrared, ${ }^{1} \mathrm{H}$ NMR and ${ }^{119} \mathrm{Sn}$ Mössbauer spectroscopy. These data support six-coordinated distorted octahedral structures with two alkyl groups in trans positions.

Introduction

Several triorganotin(IV) derivatives of amino acids, dipeptides and the X-ray structure of $\mathrm{Me}_{3} \mathrm{Sn}$ - glycine have been reported [1-5]. The dimethyltin(IV) derivatives of glycine and β-alanine have been studied by using infrared and Mössbauer data [6]. Diorganotin(IV) derivatives of sulfur-containing amino acids have been studied by variable temperature Mössbauer data [7,8]. A distorted trigonal bipyramidal structure to chloro(ethyl-1-cysteinato- N, S) dimethyltin(IV) has been assigned on the basis of X-ray studies [9]. Recently, six- and five-coordinate ($2 / 1$ and $1 / 1$, ligand/metal) diorganotin(IV) complexes of N-phthaloyl-glycine and N-benzoylglycine [10], N-acetylamino acids [11], have been prepared and characterized by infrared and Mössbauer data. The carboxylate group of the N-protected amino acids used in this communication acts as a bidentate group unlike its unidentate nature reported in the unprotected amino acid [6].

Experimental

N-Phthaloyl-dL-alanine, N-phthaloyl-L-leucine, N-phthaloyl-L-phenylalanine and diethyltin oxide were prepared by the reported methods [12,13]. Dimethyl, di-n-butyl,
and di-n-octyltin oxides (Alfa Products, U.S.A.) were used as such.
Melting points were determined in open capillaries and are uncorrected. Carbon, hydrogen and nitrogen analysis were carried out by the microanalytical service, Calcutta University. Tin was estimated gravimetrically as SnO_{2}. Molecular weights were determined cryoscopically in benzene as well as the Rast method in molten camphor. Infrared spectra ($4000-200 \mathrm{~cm}{ }^{11}$) (KBr) were recorded on a Perkin-Elmer 577 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Tesla BS 487 (80 MHz) in CDCl_{3} with TMS as the internal standard. Mössbauer spectra were recorded with a Harwell 6000 series spectrometer with sample cooled by liquid nitrogen (ca. 80 K) and source ($\mathrm{Pd}-\mathrm{Sn}$) at room temperature. Isomer shifts are relative to SnO_{2} measured at room temperature.

Preparation of the complexes

The title compounds in $2 / 1$ and $1 / 1$ (ligand/metal) molar ratio were prepared by refluxing the ligand and the diorganotin oxide in a mixed solvent (dry benzene (30 cm^{3}) and absolute ethanol $\left(10 \mathrm{~cm}^{3}\right)$) for $3-4 \mathrm{~h}$ and water formed during the reaction was removed azeotropically. The resulting solution was filtered and the solvent was removed under reduced pressure to obtain a white solid except in case of di-n-octyltin(IV) derivatives where a syrup was obtained which was kept under vacuum for $2-3$ d when a white solid was obtained. All the complexes were recrystallized from methanol.

Results and discussion

In the present study, diorganotin(IV) complexes of N-phthaloyl-L-leucine (L_{1}), N-phthaloyl-DL-alanine (L_{2}) and N-phthaloyl-L-phenylalanine (L_{3}) have been prepared and $2 / 1$ and $1 / 1$ stoichiometries were assigned by elemental analysis (Table 1). All the complexes are colourless and soluble in common organic solvents such as benzene. alcohol. methanol and chloroform. Molecular weight determination in benzene shows various degrees of polymerization ($n=1,2.3$ or 4 for different complexes) while all the complexes exist as monomers in molten camphor $\left(175^{\circ} \mathrm{C}\right)$ (Table 2). Low degree of polymerization for the complexes is further supported by their solubility in common solvents.

Infrured data

Infrared spectra of the ligands and their complexes have been recorded in KBr ($4000-200 \mathrm{~cm}^{-1}$). The stretching frequencies for imido $\mathrm{C}=\mathrm{O}$, acid $\mathrm{COO}, \mathrm{Sn}-\mathrm{C}$, $\mathrm{Sn}-\mathrm{O}, \mathrm{Sn}-\mathrm{N}$ and $\mathrm{Sn}-\mathrm{O}-\mathrm{Sn}$ bonds are given in Table 3. The deprotonation of the carboxylic group in the complexes is evident from the disappearance of a broad band due to COOII group in the $3100-2500 \mathrm{~cm}^{-1}$ region. Presence of a broad band ($3600-3400 \mathrm{~cm}^{-1}$) in the complexes (Complexes 1, 4, 8-10, 12, 14, 21, Table 3) indicates water molecule. The remaining bands due to water are overlapped by ligand absorptions.
$\nu(C=O)_{\text {Imido }}$ and $\nu(\mathrm{COO})_{\text {acid }}$. In the spectra of the ligands and the complexes, asymmetric and symmetric stretching modes of imido $\mathrm{C}=\mathrm{O}$ are observed around 1720 and $1780-1770 \mathrm{~cm}^{-1}$ respectively, indicating non-participation of the imido $\mathrm{C}=\mathrm{O}$ in complex formation. The $\Delta \nu$-value, $\left[\Delta \nu=\nu_{a \rho, m}(\mathrm{COO})-\nu_{a \varsigma ı m}(\mathrm{COO})\right], 200 \pm$
$10 \mathrm{~cm}^{-1}$ is lower in the spectra of all the complexes as compared to that observed in the spectra of the free ligands ($\Delta \nu 320 \mathrm{~cm}^{-1}$) and is comparable to $\Delta \nu$-value (205 cm^{-1}) of sodium salts of the ligands which clearly indicates bidentate nature of the carboxylate [14]. However, in the case of $2 / 1$ complexes a strong band present in the free carboxylate region ($1710-1705 \mathrm{~cm}^{-1}$) shows that in these complexes the second carboxylate group is bonded to $\operatorname{tin}(I V)$ in a unidentate manner [1,15].
$\nu(S n-C), \nu(S n-O), \nu(S n-N)$ and $\nu(S n-O-S n)$. The presence of only one $\mathrm{Sn}-\mathrm{C}$ absorption band in the spectra of the complexes in the $600-500 \mathrm{~cm}^{-1}$ region, indicates a linear configuration of the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ moiety [6,14]. A broad band in the vicinity of $500 \mathrm{~cm}^{-1}$ is assigned to $\mathrm{Sn}-\mathrm{O}$ bond [16] while a medium to weak intensity band around $470-430 \mathrm{~cm}^{-1}$ is attributed to $\mathrm{Sn}-\mathrm{N}$ stretching mode [17]. In case of $1 / 1$ complexes a strong broad band in $650-630 \mathrm{~cm}^{-1}$ region is assigned to $\mathrm{Sn}-\mathrm{O}-\mathrm{Sn}$ bond [18].

${ }^{I} H$ NMR data

The ${ }^{1} \mathrm{H}$ NMR spectra of the ligands and complexes have been recorded in CDCl_{3} (δ, ppm; Table 4). The absence of signal ($9.1-8.5 \mathrm{ppm}$) in the spectra of all of the complexes indicates the replacement of the carboxyl proton by tin(IV). In the dimethyltin(IV) complexes the presence of a single methyl resonance show trans configuration of the two methyl groups. The coupling constant $J\left({ }^{19} \mathrm{Sn}-\mathrm{C}-{ }^{1} \mathrm{H}\right)$ for the dimethyltin(IV) derivatives with phthaloyl-dL-alanine and phthaloyl-L-leucine in $1 / 2$ ratio are 67 and 90 Hz respectively which are consistent with a higher than four-coordinated structure in solution. In the diethyltin(IV) complexes, a single triplet due to the CH_{3} protons further supports the trans position of the alkyl groups.

Di-n-butyl and di-n-octyltin(IV) complexes show two very broad signals due to the alkyl groups. The resonance due to the CH_{3} protons of the two ligands, L-leucine and DL-alanine gets obscured by the alkyl protons in case of some of the complexes and become difficult to be identified. However, the integration area is equivalent to the number of protons calculated from the proposed structure in case of all the complexes.

Mössbauer data

In diorganotin(IV) complexes when the donor atoms are highly electronegative the $Q S$ is mainly determined by the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angle and distortion from a regular six-coordination gives values similar to those for five-coordination [19-29]. The Mössbauer data (IS 1.24-1.55 and QS $3.10-3.70 \mathrm{~mm} \mathrm{~s}^{-1}$) for diorganotin(IV) carboxylates, di-n-butyltin(IV) diacetate ($I S 1.36 ; Q S 3.56 \mathrm{~mm} \mathrm{~s}^{-1}$) and di-n-butyl$\operatorname{tin}(I V)$ maleate ($I S 1.38 ; Q S 3.74 \mathrm{~mm} \mathrm{~s}^{-1}$) support a distorted trans octahedral geometry around $\operatorname{tin}(I V)[30,31] . \mathrm{Me}_{2} \operatorname{Sn}(\mathrm{IV})$ Salen (IS 1.13; QS $3.46 \mathrm{~mm} \mathrm{~s}^{-1}$) has been assigned a distorted octahedral structure with the two $\mathrm{Sn}-\mathrm{C}$ bonds symmetrically bent towards the oxygen atoms [25]. In the present case the observed $Q S$ values while indicating a trans structure are considerably lower than expected. This is consistent with the distortion from a regular octahedral arrangement as discussed. This is further supported by the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angle values $\left(172-138^{\circ}\right)$ calculated using Sham and Bancroft method [32].

Interpretation of the Mössbauer data for the complexes 2,3 and 14 (Table 5) is a little different. For these three complexes the $I S$ values are comparatively lower than
TABLE 1
PHYSICAL AND ANALYTICAL DATA OF DIALKYLTIN(IV) COMPLEXES WITH N-PHTHALOYL AMINO ACIDS

Complex ${ }^{\text {a }}$	Yield(\%)	$\begin{aligned} & \text { M.p. } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Analysis (Found (calcd.)(\%))			
			C	H	N	Sn
$\left(\mathrm{L}_{1}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1)$	75	170-175	$\begin{gathered} 52.09 \\ (52.42) \end{gathered}$	$\begin{gathered} \hline 5.16 \\ (5.24) \end{gathered}$	-	$\begin{gathered} 17.89 \\ (17.28) \end{gathered}$
$\left(\mathrm{L}_{2}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}(2)$	53	190-195	$\begin{gathered} 50.44 \\ (49.26) \end{gathered}$	$\begin{gathered} 3.93 \\ (3.76) \end{gathered}$	-	$\begin{gathered} 19.78 \\ (20.30) \end{gathered}$
$\left(\mathrm{L}_{3}\right)_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}(\mathbf{3})$	80	257-260	$\begin{gathered} 58.41 \\ (58.64) \end{gathered}$	$\begin{aligned} & 4.25 \\ & (4.07) \end{aligned}$	$\begin{gathered} 4.11 \\ (3.80) \end{gathered}$	$\begin{gathered} 15.64 \\ (16.11) \end{gathered}$
$\left(\mathrm{L}_{1}\right)_{2} \mathrm{Sn}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(4)$	70	265-266	$\begin{gathered} 51.21 \\ (51.15) \end{gathered}$	$\begin{gathered} 6.18 \\ (5.86) \end{gathered}$	$\begin{gathered} 3.91 \\ (3.73) \end{gathered}$	$\begin{aligned} & 16.32 \\ & (15.81) \end{aligned}$
$\left(\mathrm{L}_{2}\right)_{2} \mathrm{Sn}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}(\mathbf{5})$	80	210	$\begin{gathered} 50.55 \\ (50.92) \end{gathered}$	$\begin{gathered} 3.64 \\ (4.24) \end{gathered}$	-	$\begin{gathered} 18.78 \\ (19.37) \end{gathered}$
$\left(\mathrm{L}_{3}\right)_{2} \mathrm{Sn}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}(\mathbf{6})$	60	200	$\begin{gathered} 60.22 \\ (59.63) \end{gathered}$	$\begin{gathered} 4.35 \\ (4.45) \end{gathered}$	$\begin{gathered} 4.35 \\ (3.66) \end{gathered}$	$\begin{gathered} 16.03 \\ (15.52) \end{gathered}$
$\left(\mathrm{L}_{1}\right)_{2} \mathrm{Sn}\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}(7)$	70	200-206	$\begin{gathered} 58.00 \\ (57.39) \end{gathered}$	$\begin{gathered} 6.44 \\ (6.11) \end{gathered}$	$\begin{gathered} 4.30 \\ (3.72) \end{gathered}$	$\begin{gathered} 15.60 \\ (15.77) \end{gathered}$
$\left(\mathrm{L}_{2}\right)_{2} \mathrm{Sn}\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(8)$	60	170-173	$\begin{gathered} 50.70 \\ (49.81) \end{gathered}$	-	\cdots	$\begin{gathered} 16.70 \\ (16.42) \end{gathered}$
$\left(\mathrm{L}_{3}\right)_{2} \mathrm{Sn}\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(\mathbf{9})$	75	208-210	$\begin{gathered} 56.82 \\ (56.46) \end{gathered}$	$\begin{gathered} 5.98 \\ (5.60) \end{gathered}$	$\begin{gathered} 3.40 \\ (3.14) \end{gathered}$	--
$\left(\mathrm{L}_{1}\right)_{2} \mathrm{Sn}\left(\mathrm{n}-\mathrm{C}_{8} \mathrm{H}_{17}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(10)$	55	106-108	$\begin{gathered} 58.01 \\ (57.47) \end{gathered}$	$\begin{gathered} 7.31 \\ (7.40) \end{gathered}$	$\begin{array}{r} 3.65 \\ (3.05) \end{array}$	$\begin{gathered} 13.69 \\ (12.92) \end{gathered}$
$\left(\mathrm{L}_{2}\right)_{2} \mathrm{Sn}\left(\mathrm{n}-\mathrm{C}_{8} \mathrm{H}_{17}\right)_{2}(11)$	75	95-98	$\begin{gathered} 58.87 \\ (58.72) \end{gathered}$	$\begin{gathered} 642 \\ (6.40) \end{gathered}$	$\begin{gathered} 3.58 \\ (3.59) \end{gathered}$	$\begin{gathered} 15.10 \\ (15.20) \end{gathered}$

55
255
260
223
260
245
230
$106-108$
$175-180$
206
$80-90$
$50-56$
55
 $\left(\mathrm{L}_{3}\right)_{2} \mathrm{Sn}\left(\mathrm{n}-\mathrm{C}_{8} \mathrm{H}_{17}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(12)$
$\left[\mathrm{L}_{1} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2} \mathrm{O}(13)$
$\left[\mathrm{L}_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}(14)$
$\left[\mathrm{L}_{3} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2} \mathrm{O}(15)$
$\left[\mathrm{L}_{1} \mathrm{Sn}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]_{2} \mathrm{O}(16)$
$\left[\mathrm{L}_{2} \mathrm{Sn}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]_{2} \mathrm{O}(17)$
$\left[\mathrm{L}_{3} \mathrm{Sn}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]_{2} \mathrm{O}(\mathbf{1 8})$
$\left[\mathrm{L}_{1} \mathrm{Sn}\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{2} \mathrm{O}(19)$
$\left[\mathrm{L}_{2} \mathrm{Sn}\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{2} \mathrm{O}(\mathbf{2 0})$
$\left[\mathrm{L}_{3} \mathrm{Sn}\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{2} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}(21)$
$\left[\mathrm{L}_{1} \mathrm{Sn}\left(\mathrm{n}-\mathrm{C}_{8} \mathrm{H}_{17}\right)_{2}\right]_{2} \mathrm{O}(22)$
$\left[\mathrm{L}_{2} \mathrm{Sn}\left(\mathrm{n}-\mathrm{C}_{8} \mathrm{H}_{17}\right)_{2}\right]_{2} \mathrm{O}(23)$
$\left[\mathrm{L}_{3} \mathrm{Sn}\left(\mathrm{n}-\mathrm{C}_{8} \mathrm{H}_{17}\right)_{2}\right]_{2} \mathrm{O}(24)$
${ }^{a} \mathrm{~L}_{1}=N$-phthaloyl-L-leucine, $\mathrm{L}_{2}=N$-phthaloyl-DL-alanine, $\mathrm{L}_{3}=N$-phthaloyl-L-phenylalanine.
the other complexes, indicating four-coordinate tin(IV) while the $Q S$ values are in the range observed for other complexes. The ratio $\rho=Q S / I S$, is >3.2, which suggests higher coordination [8,31]. In case of dicthyltin(IV) complexes ($\mathbf{4}$ and 5 , Table 5) the $Q S$ values are characteristic of a regular trans octahedral structure [33].

Thermogravimetric analysis ($25-600^{\circ} \mathrm{C}$)
In case of complexes $1,4,8-10,12,14$ and 21 in Table 2, loss of weight between $25-120^{\circ} \mathrm{C}$ corresponds to the water molecule present in the crystal lattices. No definite conclusion could be drawn about the nature of the other decomposition products.

Structures

$R_{2} \operatorname{Sn}(L)_{2}[2 / 1]$ complexes. Mössbauer, ${ }^{1} \mathrm{H}$ NMR and infrared data support a six-coordinate distorted octahedral structure (I) with linear $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ moiety for the monomers. A weak molecular interaction present at low temperature in the case of di, tri and tetramers (complexes 1-4, 7-9, Table 2) may be visualized as in structure II.
(Continued on p. 382)

TABLE 2
MOLECULAR WEIGHT AND THERMOGRAVIMETRIC ANALYSIS (TGA) DATA

Complex ${ }^{\text {a }}$	Molecular weight ${ }^{\text {b }}$			n^{\prime}	TGA		
	Found		Calcd.		$T\left({ }^{\circ} \mathrm{C}\right)$	\% loss	Assıgnment
	C	R					
1	3012	756	686.7	Tetramer	20-120	28	$1 \mathrm{H}_{2} \mathrm{O}$
2	1839	543	584.7	Trimer	-	-	
3	2161	790	736.7	Trimer	-	-	-
4	2178	727	750.7	Trimer	90-120	7.2	$3 \mathrm{H}_{2} \mathrm{O}$
5	659	613	612.7	Monomer	-	-	-
6	894	822	764.7	Monomer	-	-	-
7	1403	893	752.7	Dimer	-	-	-
8	1642	726	776	Dimer	80-120	5.6	$\sim 3 \mathrm{H}_{2} \mathrm{O}$
9	1719	910	892.7	Dimer	100-140	7.5	$-4 \mathrm{H}_{2} \mathrm{O}$
10	865	1141	918.7	Monomer	80-110	5.8	$3 \mathrm{H}_{2} \mathrm{O}$
11	835	825	780.7	Monomer	-	-	$-$
12	985	926	1004.7	Monomer	80-140	7.18	$4 \mathrm{H}_{2} \mathrm{O}$
13	844	909	833.4	Monomer	-	-	-
14	816	689	767.4	Monomer	90-120	2.3	$1 \mathrm{H}_{2} \mathrm{O}$
15	1014	931	901.4	Monomer	-	-	$-{ }^{-}$
16	943	920	889.4	Monomer	-	-	-
17	1588	785	805.4	Dimer	-	-	-
18	1092	726	957.4	Monomer	-	-	-
19	2882	861	1001.4	Trimer	-	-	-
20	1800	930	917.4	Dimer	-	-	-
21	1055	1048	1087.4	Monomer	60-80	1.6	$1 \mathrm{H}_{2} \mathrm{O}$
22	1800	1164	1225.4	Monomer	-	-	-
23	4469	1070	1141.4	Tetramer	-	-	-
24	4019	1060	1293.4	Trimer	-	-	-

[^0]TABLE 3
INFRARED SPECTRAL DATA (cm^{-1}; in KBr)

Complex ${ }^{\text {a }}$	$\nu_{v_{y} m}(\mathrm{C}=\mathrm{O})_{1 \mathrm{mido}}$	$\begin{aligned} & v_{a s v m}(\mathrm{C}=\mathrm{O})_{\mathrm{ammdo}} \\ & v_{a s, m}(\mathrm{COO})_{\mathrm{acid}} \end{aligned}$	$v_{s ı m}(\mathrm{COO})_{\mathrm{acıd}}$	$\nu(\mathrm{Sn}-\mathrm{C})$	$\nu(\mathrm{Sn}-\mathrm{O})$	$\nu(\mathrm{Sn}-\mathrm{N})$	$\nu(\mathrm{Sn}-\mathrm{O}-\mathrm{Sn})$
N-Phthaloyl-L-leucine (L_{1})	1775m	1640-1690s,b	1290s	-	-	-	-
N-Phthaloyl-DL-alanine (L_{2})	1775s	1740-1690s,b	1390s, b	-	-	-	-
N-Phthaloyl-L-phenylalanine (L_{3})	1770	1740-1700s, b	1390s, b	-	-	-	-
Sodium(N-pht-DL-alaninate)	1775m, b	1715s,b, 1600s,b	1395s	-	-	-	-
Sodium(N-pht-L-leucinate)	1775m, b	1710s,b,1600s,b	1395s, b	-	-	-	-
1	1770 m	1720sh, 1710 s , 1600 s , b	1400 s	500m	490m, b	470m, b	-
2	1775m,sh	1720sh, 1710s,b, 1595s,b	1390s	505w,b	495 m	445 m	-
3	1780s	1715s,b, 1675m, 1595s	1385s	570 m	505 m	430w, b	-
4	1770 m	$1715 \mathrm{~s}, 1700 \mathrm{sh}, 1575 \mathrm{~s}$	1385s	540 m	490 m	460 m	
5	1770s	1720sh, 1710s,b, 1600s,b	1390s,b	510w	490w	450s, b	-
6	1780 m	$1725 \mathrm{sh}, 1710 \mathrm{~s}, \mathrm{~b}, 1600 \mathrm{~s}, \mathrm{~b}$	1390s,b	565 m	490 m	450 m	-
7	1780 m	1730s, 1710sh, 1600s	1392s	585m	490s	460 m	-
8	1776s	1720sh, 1705s,b, 1605s,b	1380s, b	570w,b	490m, b	435m, b	-
9	1780 m	1730sh. 1720s, 1600s	1390s	570 m	495s	460sh	-
10	1755m	1700sh, 1690s, 1570s	1365s	610sh	520 m	465 m	-
11	1760s	1710s,b, 1685s. $1570 \mathrm{~s}, \mathrm{~b}$	$1380 \mathrm{~s}, \mathrm{~b}$	545 m	525 s	498s,b	-
12	1775m	$1720 \mathrm{~s}, 1650 \mathrm{~m}, 1595 \mathrm{~s}$	1385s	570 m	485m	450sh	-
13	1780 m	1715s, 1590s	1390s	530sh	505s	-	650s
14	1780 m	$1715 \mathrm{~s}, 1590 \mathrm{~m}$	1390s	510w,b	490w, b	430w, b	630s,b
$15^{\text {b }}$	-	-	-	-	-	-	-
16	1770 m	1715s, 1595s	1390s	540 m	480m	445w	690 m
17	1780 m	1715s, 1595s	1390s	555 m	490s	430w,b	635s
18 "	-	-	-	-	-	-	-
19	1775m	1715s, 1590s	1380 s	575m	480m	445m	645s
20	1770m	1715s, 1590 s	1380s	-	-	-	-
21	1775m	1715s, 1595s	1385s	570 m	490 m	450 m	645sh
22	1775m	1705s,b, 1595s,b	1390s	600m,sh	495s	430w,b	635s
$23{ }^{\text {b }}$	-	-	-	-	-	-	-
$24{ }^{\text {b }}$	-	-	-	-	-	-	-

[^1]TABLE 4
${ }^{1} \mathrm{H}$ NMR SPECTRAL DATA (in $\mathrm{CDCl}_{3}: \delta . \mathrm{ppm}$)

Complex ${ }^{\text {a }}$	$\delta\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) / \delta\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$	$\delta(\mathrm{CH})$	$\delta\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & \delta\left(\mathrm{CH}_{3}\right) / \\ & \delta(\mathrm{CH}) \end{aligned}$	$\delta\left(\mathrm{Sn}-\mathrm{CH}_{2}\right)$	$\delta\left(\mathrm{Sn}^{\left.-\mathrm{CH}_{3}\right)}\right.$
N-Phthaloyl-L-leucine (L_{1})	$\begin{aligned} & 7.75 \\ & (\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.98 \\ & (\mathrm{q}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 2.15 \\ & (q, 2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.88 \\ & (\mathrm{~d} .6 \mathrm{H}) \end{aligned}$	-	-
N-Phthaloyl-DL-alanıne (L_{2})	$\begin{aligned} & 7.76 \\ & (\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 5.01 \\ & (\mathrm{q}, 1 \mathrm{H}) \end{aligned}$	-	$\begin{aligned} & 1.75 \\ & (\mathrm{~d}, 3 \mathrm{H}) \end{aligned}$	-	-
N-Phthaloyl-L-phenylalanine (L_{3})	$\begin{aligned} & 7.61 \\ & (\mathrm{~m}, 4 \mathrm{II}) / \\ & 7.11(\mathrm{~s}, 5 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 5.15 \\ & (\mathrm{t} .11 \mathrm{I}) \end{aligned}$	$\begin{aligned} & 3.50 \\ & (\mathrm{~d} .2 \mathrm{H}) \end{aligned}$		-	-
1	$\begin{aligned} & 7.75 \\ & (\mathrm{bm}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.65 \\ & (\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.13-1.85 \\ & (\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (\mathrm{~m}, 12 \mathrm{H}) / \\ & 0.675(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	-	$\begin{aligned} & 0.60 \\ & (\mathrm{~s}, 6 \mathrm{H}) \end{aligned}$
2	$\begin{aligned} & 7.62 \\ & (\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.90 \\ & (\mathrm{q}, 2 \mathrm{H}) \end{aligned}$	-	$\begin{aligned} & 1.63 \\ & (\mathrm{~d} .6 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.10 \\ & (\mathrm{~s}, 6 \mathrm{H}) \end{aligned}$	-
3	$\begin{aligned} & 7.50(\mathrm{~m} .8 \mathrm{H}) \\ & 7.00(\mathrm{~s}, 10 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.80 \\ & (\mathbf{t}, 2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 3.20 \\ & (\mathrm{~d}, 4 \mathrm{H}) \end{aligned}$	-	$\begin{aligned} & 0.70 \\ & (\mathrm{~s} .6 \mathrm{H}) \end{aligned}$	-
4	$\begin{aligned} & 7.68 \\ & (\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.95 \\ & (\mathrm{q}, 2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.65 \\ & (\mathrm{t}, 4 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.90 \\ & (\mathrm{~d} .12 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.50-1.10 \\ & (\mathrm{bm}, 4 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.87 \\ & (\mathrm{t}, 6 \mathrm{H}) \end{aligned}$
5	$\begin{aligned} & 7.68 \\ & (\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 5.00 \\ & (\mathrm{q}, 2 \mathrm{H}) \end{aligned}$	-	$\begin{aligned} & 1.75 \\ & (\mathrm{~d}, 6 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 2.25-1.77 \\ & (\mathrm{bm} .4 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.33 \\ & (\mathrm{t}, 6 \mathrm{H}) \end{aligned}$
6	$\begin{aligned} & 7.60(\mathrm{~m}, 8 \mathrm{H}) \\ & 7.11(\mathrm{~s}, 10 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 5.00 \\ & (5,10 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 2.42 \\ & (\mathrm{~d}, 4 \mathrm{H}) \end{aligned}$	-	$\begin{aligned} & 1.66-1.00 \\ & (\mathrm{bm}, 4 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.89 \\ & (\mathrm{t}, 18 \mathrm{H}) \end{aligned}$
7	$\begin{aligned} & 7.75 \\ & (\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4,45-4.90 \\ & (\mathrm{bq}, 2 \mathrm{H}) \end{aligned}$	-	-	$\begin{aligned} & 1.5-1.0 \\ & (\mathrm{~m} .18 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.98 \\ & (\mathrm{bm}, 18 \mathrm{H}) \end{aligned}$
8	$\begin{aligned} & 7.65 \\ & (\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.65 \\ & (\mathrm{bq}, 2 \mathrm{H}) \end{aligned}$	-	-	$\begin{aligned} & 1.70-1.00 \\ & (\mathrm{~m}, 18 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.80 \\ & (\mathrm{t} .6 \mathrm{H}) \end{aligned}$
9	$\begin{aligned} & 7.75(\mathrm{~m} .8 \mathrm{H}) \\ & 710(\mathrm{~s}, 10 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.67 \\ & (\mathrm{t}, 2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 3.37 \\ & (\mathrm{~d}, 4 \mathrm{H}) \end{aligned}$	-	$\begin{aligned} & 1.66-110 \\ & (\mathrm{bm}, 12 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.85 \\ & (\mathrm{t}, 6 \mathrm{H}) \end{aligned}$

10^{6}	$\begin{aligned} & 7.5-8.0 \\ & (\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.42-4.80 \\ & (\mathrm{~m} 2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.55 \\ & (\mathrm{~d} .4 \mathrm{H}) \end{aligned}$	-	$\begin{aligned} & 1.45-1.00 \\ & (\mathrm{~m} .28 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.88 \\ & (\mathrm{bm}, 18 \mathrm{H}) \end{aligned}$
11^{6}	$7.58(\mathrm{~m} .8 \mathrm{H})$	$\begin{aligned} & 4.80 \\ & (\mathrm{bq}, 2 \mathrm{H}) \end{aligned}$	\cdots	$\begin{aligned} & 1.62 \\ & (\mathrm{~d}, 6 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.50-1.12 \\ & (\mathrm{~m}, 28 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.90 \\ & (\mathrm{~m}, 6 \mathrm{H}) \end{aligned}$
12	$\begin{aligned} & 7.50(\mathrm{~m}, 8 \mathrm{H}) / \\ & 7.10(\mathrm{~s}, 10 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.80 \\ & (\mathrm{bp}, 2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.33 \\ & (\text { bd. } 4 \mathrm{H}) \end{aligned}$	--	$\begin{aligned} & 1.66-1.00 \\ & (\mathrm{bm}, 28 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.93 \\ & (\mathrm{bm}, 6 \mathrm{H}) \end{aligned}$
$13{ }^{\text {d }}$	-	-	-	-	-	-
14	$\begin{aligned} & 7.75 \\ & (\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.67 \\ & (\mathrm{q}, 2 \mathrm{H}) \end{aligned}$	-	$\begin{aligned} & 1.50 \\ & (\mathrm{~d}, 6 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.70 \\ & (\mathrm{~s}, 12 \mathrm{H}) \end{aligned}$	-
15	$\begin{aligned} & 7.60(\mathrm{~m}, 8 \mathrm{H}) \\ & 7.08(\mathrm{~s}, 10 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.88 \\ & (\mathrm{t}, 2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 3.33 \\ & \left(\mathrm{~d}_{.} 4 \mathrm{H}\right) \end{aligned}$	-	$\begin{aligned} & 0.70 \\ & (\mathrm{~s}, 12 \mathrm{H}) \end{aligned}$	-
16	$\begin{aligned} & 7.75 \\ & (\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.77 \\ & (\mathrm{q}, 2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.65 \\ & (\mathrm{t}, 2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.90 \\ & (\mathrm{~d}, 12 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.23 \\ & (\mathrm{bm}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.80 \\ & (\mathrm{t}, 2 \mathrm{H}) \end{aligned}$
17	$\begin{aligned} & 7.77 \\ & (\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.85 \\ & (q .2 H) \end{aligned}$	--	$\begin{aligned} & 1.62 \\ & (\mathrm{~d}, 2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 2.25-1.75 \\ & (\mathrm{bm}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.25 \\ & (\mathrm{t} .12 \mathrm{H}) \end{aligned}$
18	$\begin{aligned} & 7.57(\mathrm{~m}, 8 \mathrm{H}) / \\ & 7.12(\mathrm{~s}, 10 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.5-4.9 \\ & (\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	-	--	$\begin{aligned} & 0.5-2.4 \\ & (\mathrm{bm}, 38 \mathrm{H}) \end{aligned}$	-
19	$\begin{aligned} & 7.62 \\ & (\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.75 \\ & (\mathrm{bq}, 2 \mathrm{H}) \end{aligned}$	-	-	$\begin{aligned} & 1.75-1.00 \\ & (\mathrm{bm}, 30 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (\mathrm{~m}, 12 \mathrm{H}) \end{aligned}$
20	$\begin{aligned} & 7.62 \\ & (\mathrm{~m} .8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.75 \\ & (\mathrm{bq}, 2 \mathrm{H}) \end{aligned}$	-	\cdots	$\begin{aligned} & 1.75-1.0 \\ & (\mathrm{bm}, 30 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (\mathrm{~m}, 12 \mathrm{H}) \end{aligned}$
21	$\begin{aligned} & 7.55(\mathrm{~m}, 8 \mathrm{H}) / \\ & 7.08(\mathrm{~s}, 10 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.67 \\ & (b d, 2 H) \end{aligned}$	$\begin{aligned} & 3.37 \\ & (\mathrm{bd}, 4 \mathrm{H}) \end{aligned}$	-	$\begin{aligned} & 1.50-1.0 \\ & (\mathrm{bm} .24 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.85 \\ & (\mathrm{bd}, 24 \mathrm{H}) \end{aligned}$
22	$\begin{aligned} & 7.60 \\ & (\mathrm{bm}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.5-4.87 \\ & (\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 2.25 \\ & (\mathrm{bd}, 4 \mathrm{H}) \end{aligned}$	\cdots	$\begin{aligned} & 1.621 .00 \\ & (\mathrm{bm}, 56 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.85 \\ & (\mathrm{bd}, 24 \mathrm{H}) \end{aligned}$
23	$\begin{aligned} & 7.70 \\ & (\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 4.75 \\ & (\mathrm{bq}, 2 \mathrm{H}) \end{aligned}$	--	$\begin{aligned} & 1.62 \\ & (\mathrm{~d}, 6 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.50-1.00 \\ & (\mathrm{bm}, 56 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.90 \\ & (\mathrm{bm}, 12 \mathrm{H}) \end{aligned}$
24^{d}	-	-	-	-	-	-

[^2]
(I)
$$
\left(X=\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)
$$
$R_{2}(L) S n-O-S n(L) R_{2}[l / l]$ complexes. A six-coordinate distorted octahedral structure (III) with a $\mathrm{Sn}-\mathrm{O}-\mathrm{Sn}$ bridge and a linear configuration of $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ is supported by infrared, ${ }^{1} \mathrm{H}$ NMR and Mössbauer data for the monomers. Intermolecular association at low temperature for some complexes (17, 19, 20, 23, 24. Table 2) may be represented as in structure IV.

The assignment of these structures is tentative and based on spectroscopic data. It

TABLE 5
${ }^{119 \mathrm{~m}} \mathrm{Sn}$ MÖSSBAUER DATA FOR N-PHTHALOYL AMINO ACID DIALKYLTIN(IV) COMPLEXES (at $80 \mathrm{~K} ; Q S$ and $I S \mathrm{in} \mathrm{mm} \mathrm{s}^{-1}$)

Complex ${ }^{\text {a }}$	$\begin{aligned} & I S \\ & \left(\mathrm{SnO}_{2}\right) \end{aligned}$	$Q S$	Line widths	$\rho=Q S / I S$	$\begin{aligned} & \mathrm{C}-\mathrm{Sn}-\mathrm{C} \\ & \left(^{\circ}\right) \end{aligned}$	Probable structure
$1^{\text {b }}$	1.27	3.44	1.00; 0.99	270	141	II
$2{ }^{\prime}$	1.06	3.41	1.02; 1.09	3.21	140	
$3{ }^{\prime}$	1.03	3.56	1.04: 124	3.45	144]	
$4^{\text {b }}$	1.67	4.09	0.84: 0.91	245	172)	
$5^{\text {c }}$	1.57	3.91	0.90; 1.00	2.50	159	I
6°	1.33	3.66	0.91; 0.92	2.70	148 \}	
7'	1.16	3.40	1.06; 1.06	2.93	139	II
$8{ }^{\text {c }}$	137	3.52	1.01; 1.08	2.56	143 \}	
$9 \times$	133	345	1.02; 1.00	2.59	141	
10^{b}	1.38	3.43	0.88; 0.89	2.45	140	1
11	1.46	3.63	0.84:1.10	3.00	147 \}	
12°	1.16	3.42	0.99: 0.96	294	140	
$13^{\text {b }}$	1.23	3.39	0.95; 0.95	2.75	140	III
$14^{\text {c }}$	1.03	3.35	1.00: 1.10	3.25	138	
15	1.25	3.37	0.87; 0.94	2.69	138	
16	1.45	3.64	1.06; 1.05	2.52	147	
17^{\prime}	1.15	3.43	1.15; 1.20	2.98	140	IV
18	1.39	3.46	0.93; 1.03	2.48	141	III
19	1.15	3.43	1.00: 108	2.98	$140\}$	IV
20 c	1.18	3.54	1.18; 1.19	3.00	144 $\}$	
21	1.32	3.47	0.93: 0.91	2.62	141 \}	III
22^{b}	1.38	3.38	1.00, 1.06	2.44	138 \}	
23	1.38	3.50	0.93; 0.98	2.53	142	IV

[^3]
(II)
$\left(X=\mathrm{CH}_{2} \mathrm{CH}_{\left.\left(C \mathrm{CH}_{3}\right)_{2}, \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5} ; n=2,3 \text { or } 4\right)}\right.$

(III)
$$
\left(X=\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)
$$

($X=\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5} ; n=2,3$ or 4)
needs further investigation by single crystal X-ray diffraction. However, these complexes are unique in the sense that they have a bidentate carboxylate group unlike the earlier reported organotin complexes with the unprotected amino acids which contain a unidentate carboxylate group [6]. Nevertheless cadmium(II) complexes with N-acetyl derivative of glycine [34], L-alanine and β-alanine [35] possess bidentate carboxylate groups.

Acknowledgements

One of us (R.G.) is grateful to CSIR, New Delhi, India for financial assistance.

References

1 B.Y.K. Ho and J.J. Zuckerman, Inorg. Chem., 12 (1973) 1552.
2 G. Domazetis, R.J. Magee and B.D. James, J. Organomet. Chem., 173 (1979) 357.
3 B.Y.K. Ho, J.J. Zuckerman and J.A. Zubita, J. Chem. Soc., Chem. Commun., (1975) 88.
4 B.Y.K. Ho and J.J. Zuckerman, Inorg. Nucl. Chem. Lett., 9 (1973) 849.
5 B.K.H. Ho, K.C. Molloy, J.J. Zuckerman, F. Reidinger and Z.A. Zubieta, J. Organomet. Chem., 187 (1980) 213.
W.T. Hall and J.J. Zuckerman, Inorg. Chem., 16 (1977) 1239.
G. Domazetis, R.J. Magee and B.D. James, J. Organomet. Chem., 162 (1978) 239.
K.C. Molloy, J.J. Zuckerman, G. Domazetis and B.D. James. Inorg. Chim. Acta. 54 (1981) L217.
G. Domazetis, M.F. Mackay, R.J. Magee and B.D. James, Inorg. Chim. Acta, 34 (1979) L247.
S.S. Sandhu, Jr., Ph.D Thesis G.N.D.U. (1981).
G.K. Sandhu, R. Gupta, S.S. Sandhu and R.V. Parish, Polyhedron. in press.
A.K. Bose, F. Greer and C.C. Price, J. Org. Chem., 23 (1958) 1335; C.A., 53 (1959) 160081.

Organometallic compounds Micheal Dub (Ed.); Vol. II, Springer-Verlag, New York Inc., 1967, p. 368.
R. Okawara, M. Wada, Adv. Organomet. Chem.. 5 (1967) 137.
N.W.G. Debye, D.E. Fenton and J.J. Zuckerman, J. Inorg. Nucl. Chem., 34 (1972) 352.
R.C. Poller, The chemistry of organotin compounds, Logos London, 1970. p. 231.
P.G. Shrivastava, Ind. J. Chem., 14A (1976) 708.
C.S.C. Wang and J.M. Shreeve, J. Organomet. Chem., 46 (1972) 271.
V.G. Kumar Das, N.S. Weng, P.J. Smıth and R.H. Hill. J. Chem. Soc., Dalton Trans., (1981) 552.
W.D. Honnic and J.J. Zuckerman, J. Organomet. Chem., 178 (1979) 133.
S. Calogero, P. Furlani and V. Peruzzo, G. Tagliavinı, J. Organomet. Chem., 128 (1977) 177.
L. Pellerito, G. Ruisi and R. Barbieri, Inorg. Chım. Acta, 32 (1979) 39.
E. Lindner and V. Ansorge. Z. Anorg. Chim., 442 (1978) 189.
D. V. Naik, L. May and C. Curran, J. Coord. Chem., 2 (1973) 309.
R. Barbieri and R.H. Herber, J Organomet. Chem., 42 (1972) 65
R.V. Parish, Prog. Inorg. Chem., 15 (1972) 101.
R.V. Parish and C.E. Johnson, J. Chem. Soc. A, (1971) 1906.
J.P. Ashmore, T. Chivers, K.A. Kere and J.H.G. Van Roode, Inorg. Chem., 16 (1977) 191
T.K. Sham, J.S. Tse, N. Wellington and G.M. Bancroft. Can. J. Chem., 55 (1977) 3487
J.J. Zuckerman, Adv. Organomet. Chem., 9 (1970) 21.
A.G. Maddock and R.H. Platt, J. Chem. Soc. A, (1971) 1191.
T.K. Sham and M.G. Bancroft, Inorg. Chem., 14 (1975) 2281.
S.S. Sandhu, S.S. Sandhu, Jr., G.K. Sandhu, R.V. Parish and O. Parry, Inorg. Chim. Acta, 58 (1982) 251.

34 G. Marcotrigiano, L. Menabue and G.C. Pellacani, J. Inorg. Nucl. Chem, 37 (1975) 2344.
5 G. Marcotngiano, L. Menabue and G.C. Pellacani, J. Inorg. Nucl. Chem., 40 (1978) 753.

[^0]: $"$ See for formulae of the complexes Table $1 .{ }^{\circ} \mathrm{C}=$ Cryoscopically: $\mathrm{R}=$ Rast method. ${ }^{'} n=$ degree of polymerization in benzene.

[^1]: ${ }^{a}$ See for formulae of the complexes Table $1 .{ }^{b}$ Owing to their sticky nature, spectra could not be recorded in solid state.

[^2]: ${ }^{a}$ See for formulae of the complexes Table $1 .{ }^{b}$ Solvent $\mathrm{CCl}_{4} \cdot{ }^{\circ}$ On a Varian analytical instrument, T-60A, 60 MHz . ${ }^{4}$ Insoluble in CDCl_{3} at low temperatures.

[^3]: ${ }^{a}$ See for formulae of the complexes Table $1 .{ }^{h} I S$ and $Q S \pm 003$; line widths ± 0.05. ' IS and $Q S \pm 0.05$; line widths ± 0.08

